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ABSTRACT 

The observed performance of electron-positron colliding-beam 

storage rings is poorly understood theoretically. The problem of a 

storage ring's behavior is a particular instance of statistical 

mechanics in an external environment that varies periodically with time, 

in the limit of weak--and not necessarily isotropic--friction and 

(additive) noise. We suggest, as a practical starting point for a 

general theory of such problems, this ansatz: Phase space submanifolds 

(tori) with fixed canonical actions are manifolds of approximately equal 

probability density. Such an approach is especially well suited to 

analysis of the long-time effects of nonlinear resonance on storage ring 

behavior. We discuss formal consequences of this ansatz, and some 

associated conceptual difficulties. In an appendix, these issues are 

considered from the standpoint of "two-time" analysis. We also provide 

an example of a concrete application, closely related to Kramers' 

analysis of noise-induced barrier crossing. This paper is meant to be 

self-contained, so that it can be understood by readers outside the 

storage-ring community. 

a Operated by Unlversiiles Research Association Inc. under contract with the United Slates Department of Energy 
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I. INTRODUCTION 

Electron-positron colliding-beam storage rings are among the most 

valuable experimental instruments in modern High Energy Physics, and 

yet, in several crucial respects, their behavior is poorly understood 

theoretically. Most importantly, it has not yet been possible to 

consistently predict the (suitably normalized) rate (luminosity) at 

which a storage ring delivers hard e+e- collisions to within much better 

than a factor ,of ten, without the use of extensive computer simulation. 

This and related problems have been the subject of several symposia 

([?I, C21). For a comprehensive and pedagogical review, see Ref. [31. 

Most theoretical investigators of colliding beam instabilities have 

concentrated on the conservative or Hamiltonian parts of the interaction 

between electrons, positrons, and machine hardware. Particular 

attention has been paid to the Hamiltonian phenomenon of nonlinear 

resonance [to be explained in Section III), either as an isolated source 

of unstable behavior, or as the building block out of which more 

complicated chaotic instabilities are formed. Although this line of 

inquiry has generated some intuitively appealing qualitative pictures of 

the dominant processes in electron-positron storage rings, it has never 

produced a numerical prediction that can meaningfully be compared with 

experiment, because the full interaction between electrons, positrons, 

and machine hardware is not entirely Hamiltonian. Dissipative and noisy - 

electromagnetic (synchrotron) radiation is emitted strongly by particles 

in stored lepton beams, so that the true state of such a system is 

necessarily a statistical balance between the destabilizing effects of 

resonance, and both the dissipative and diffusive effects of high-energy 

photon emission. Fl 
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It is clearly desirable.to develop a practical quantitative theory 

of the statistical mechanics of stored colliding beams that can draw as 

heavily as possible on the valid intuitions--and that can permit one 

decisively to evaluate the questionable ones--that have been developed 

during the last twenty years of Hamiltonian analysis. In this essay, we 

propose one possible starting point for such a theory, and discuss its 

formal structure and some of its problems. In two accompanying papers 

([4], [5]), we shall take up suae related technical questions. 

An important step toward the development of practical techniques 

for the statistical mechanics of colliding beams was recently taken by 

Kheifets [6], who formulated a new perturbative representation of the 

colliding beam Fokker-Planck equation, with which he made progress 

toward accounting quantitatively for a number of experimental 

observations. Unfortunately, it appears difficult to understand 

Kheifets' numerical results at an intuitive level. The discussion in 

the present paper can be regarded as complementary to Kheifets' work. 

The present paper is intended for two groups of readers. The first 

group uonsists of accelerator scientists, whom we wish to convince that 

there are still premising but untried directions for systematic study of 

colliding beam instabilities. The second group consists of applied 

mathematicians and mathematical physicists--particularly those 

knowledgeable in the areas of stochastic processes and nonlinear 

mechanics--whom we wish to interest in the problems of storage rings, 

especially those problems for which traditional textbook methods appear 

to be inadequate. For the sake of such readers, we have written this 

article in as self-contained and pedagogical a way as possible, 

consistent with publication in a research journal. 
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In order to explain our ideas, we will not need to provide a 

general introduction to the philosophy and formalism of storage ring 

design (see [31 and 1711, but we will need to make explicit a few basic 

facts, which we present now. 

For our purposes, the most important fundamental result in storage 

ring theory is this: Electrons and positrons travel through storage 

rings (long thin pipes curved to close on themselves) in small bunches, 

and the simplest form (the so-called "weak-strong" limit [3]) of the 

system of equations that desoribes the oscillation of a stored electron 

or positron about the center of its bunch is 

ji. + ~4 + U~X + axgb,Y,2,tJ = wx ~2yJ"~ S,(t) 

j; + v;f + + + ayg(x,Y,z,tJ = wy (2~)"~ 5, ct.1 

2 + 2$ + u,2z q wz (4y)"2 5, (t) . (1.1) 

In this system of equations, the coordinate s refers to displacement 

from the bunch center along the bunch center's direction of motion 

("beam axisv), and x and y refer to displacement transverse to the beam 

axis, within and perpendicular, respectively, to the plane of the 

storage ring (see Fig. 1). 

The functions 5 in Eqs. (1.1) are independent sources of 

uncorrelated Gaussian white noise with unit delta-function variance, 

i.e., 
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<5, (t) 5, (t')> = 6(t-t') 

<5, (t) 5, (t')> = 0, (1.2) 

etc. The normalization of the noise terms in (1.1) takes the form that 

it does because we have tacitly resealed the coordinates so that 

2 2 <x2, = <y > I <a > = 1 (1.3) 

in the equilibrium to which the beam distribution relaxes when the 

function g is set equal to zero. 

The nonquadratic potential g describes collisions with the 

oppositely charged counter-rotating beam. In general, g is explicitly 

periodic in time. Physically, the repeat period T is the time it takes 

for a bunch center to circle the storage ring once. It is this 

explicit, rapid (TY-0(103)) time dependence of g--in addition to the 

anisotropic character of damping and noise--that places system (1.1) 

beyond the reach of the usual textbook methods of statistical mechanics. 

The g-terms in (1.1) are generally much smaller than the terms ~2 

and u:y. Near x:y:O, for example, Iaxg/w~xI and Iayg/UtYI are both 

typically 50(10-3) (see[31). Nevertheless, the potential g can have 

substantial cumulative effects: For example, (<Y'>)"~ is empirically 

observed to be as large as three, or more, when the collision terms are 

present (although <x2> and <z2> are typically almost unaffected.) One' s 

inability to estimate luminosity accurately can in large measure be 

attriauted to an inability to understand this enlargement of <y2> [31. 



-6- FERMILAB-Pub-83/93-THY 

In order to understand the motivation for the main ideas in the 

present paper, it is important to recognize that in real storage rings 

the damping cdefficient y is small in comparison with other rates 

characteristic of (1.1). Specifically [3], y Is typically smaller than 

wx and WY by a factor of O( 104), and smaller than W 2 by a factor of 

01 102,, and therefore an electron or positron executes many "free" 

HamiltonianF2 oscillations in the time it takes for noise or damping to 

accumulate significantly. 

In view of the slowness with which damping and noise appear to 

operate, it seems reasonable to guess that, after a long time, the phase 

space probability distribution for a particle subject to (1.1) should, 

in scme approximation, smear itself out along the paths of the dynamical 

flow corresponding to the Hamiltonian system obtained by setting y : 0. 

If this is so, we might expect to be able to approximate the probability 

distribution P(x,vx,y,v 
Y 

,z,vz, t) by a function of a smaller number of 

variables, and this in turn would enable us to simplify the important 

task of solving the Fokkar-Planok equation. 

ap ap aP ap (01~~ + a g) JE TX+"X~X+"Y~+"Z~- x x av X 

- $Y + ayg) E - U~Z) g 
Y z 

= y & CvxP + l.0: g ) 
X X 

+ Y + WyP + CIJ; Q 

+ 2-i & (VzP + uz E, 
z z (1.4) 

(The Fokker-Planck equation (1.4) determines the distribution P, which 
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determines the effective size of a beam, which directly determines [3] 

the rate at which a storage ring delivers particle-antiparticle 

collisions.) 

This is the point of view that we shall try to develop in this 

paper. It is particularly suited to the analysis of systems dominated 

by a few nonlinear resonances, for the following reason: Under general 

circumstances, the approximation of the probability distribution P by a 

function of fewer than the full complement of seven variables is always 

conceivable in principle, but it requires information about the shape of 

the Hamiltonian flow that is difficult to obtain in practice. In the 

neighborhood of a nonlinear resonance, however, this information is 

readily available, because the Hamiltonian flow there can always be 

characterized in very simple terms [El, as we shall explain in 

Section III. 

In the simpler context of underdamped nonlinear systems with only 

one degree of freedom and no explicit time dependence in the potential, 

the hypothesis that (in a sense we shall make precise shortly) 

probability smears itself out along the Hamiltonian flow was first 

articulated by Kramers more than forty years ago [9], and has since 

become a commonplace paradigm in the theory of stochastic processes. 

(For a survey of the literature, see Ref. [lo].) In what follows, we 

shall refer to this hypothesis as "thermal averaging." We shall see 

that Kramers' original formulae have their likely counterparts in the 

present, more complicated setting; in trying to derive them, however, we 

shall encounter some unique difficulties. 
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This completes our preliminary discussion. Our detailed 

presentation, which begins in the.next section, will be divided into 

four parts: 

In the first part (Section II), we develop, through heuristic 

arguments, the formalism of thermal averaging in general, without 

specific reference to nonlinear resonance. We shall encounter in this 

section the first difficulty with this approach to statistical 

processes--the phenomenon of thermal resonanoe, which can undermine 

thermal averaging when various characteristic frequencies or integrals 

satisfy a linear equation with integer coefficients. A more systematic 

account of dynamical averaging and thermal resonance, based on the 

"two-time" method [20], is given in an appendix, at the end of this 

paper. 

In the next part (Section III), we introduce the general theory and 

phenomenology of nonlinear resonance. (To distinguish nonlinear 

resonance from thermal resonance, it might be more appropriate to call 

it "mechanical resonance"; but we shall adhere to standard terminology.~ 

In the specific case of systems with one dynamical variable, we shall 

explicitly write out the form taken by the expressions of Section II 

near a nonlinear resonance. This will reveal the second difficulty with 

thermal averaging--a number of apparent discontinuities of topological 

origin in the behavior of the probability distribution at characteristic 

phase space borders known [El as resonance separatrices. 

In Section IV, we shall discuss in greater detail phenomenological 

applications of thermal averaging to systems with only one dynamical 

variable, even though most workers agree that the enlargement of the 

beams in real storage rings is due to dynamical mechanisms that require 
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more than one active degree of freedom [ll], [12]. We do this because 

at present there are many more procedures that we can conceive of 

carrying out tignoring the problems of thermal resonance and SeparatriX 

discontinuity) in one dimension than in higher dimensions. These 

include the approximate description of systems dominated by more than 

one strong nonlinear resonance, the construction of steady-state 

distributions, and the evaluation of the rate at which a nonlinear 

resonance draws particles from the beam center before the steady state 

has been achieved. (Our theory of this last rate is closely related to 

Kramers' theory [91 of noise-induced barrier orossing.1 It is hoped 

that this one-dimensional work can suggest directions for the further 

development of higher-dimensional methodology. As an illustration of 

our one-dimensional techniques, we shall apply them to some recently 

published computer-generated data [13] that exhibits features strikingly 

reminiscent of. purely one-dimensional systems. Unfortunately, our 

simple one-dimensional model falls far short of explaining the 

observations in question, providing further confirmation that real 

storage ring problems are essentially higher-dimensional. 

In the final part, Section V, we shall propose two ways in which 

the problem of thermal resonance might be investigated further. This 

section will ba a preview of two papers ([&I, [51) that follow this one, 

each of which will develop one of these lines of inquiry in greater 

detail. 
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II. THERMAL AVERAGING IN GENERAL (HEURISTIC, 

We must begin the discussion in this section by making explicit 

certain general facts about solutions to Eqs. (1.1,: 

According to the KAM theorem [21], as long as y vanishes, and as 

long as the nonlinearity in isg is not too great, most solutions to 

Eqs. (1.1) can be grouped into disjoint families, in each of which the 

Hamiltonian can be reduced to action-angle form. That is, in each such 

family, the solutions x(t), y(t), z(t) can be expressed as 

x = x&3,t, 

;.EV x- vx(i,bJ, (2.1, 

and similarly for y and z, where: x, vx, y, v y' z9 vz are 2i%pariodic 

functions of the three components of the vector 3; the explicit time 

dependence of x, vx, etc. is periodic in t, with a period equal to an 

integer multiple of the storage ring period T; and the implicit time 

dependence due to the Hamiltonian equations of motion is governed by 

(2.2, 

for some vector function Z'. (The superscript "1" is to distinguish this 

vector from the triplet of angular frequencies (wx, w y, Ws, appearing in 

(l.l,., 

The set of three-component actions f that correspond to a single 

family is by definition connected, but does not necessarily fill all of 

three-dimensional space. By contrast, a single family of solutions 

necessarily encompasses all possible angle vectors 8. 
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It will help later on to have noted here that the transformation of 

variables ((x,y,z), (vx,vy,vz)) + {B,?) is canonical. In particular, it 

has unit Jacobian. F3 

In words, Eqs. (2.11 and (2.21 say that the phase space point 

cx,; y ; z ;, , t , , undergoes translation along one member of some smooth 

family of three-dimensional tori, while the tori themselves move and 

flex, according to the explicit periodic time-dependence in (2.1). We 

shall show in the next section that these tori can be described in a 

simple and universal way near regions of nonlinear resonance. 

The first part of the hypothesis of thermal averaging is this: In 

the large-time limit, the phase space probability distribution 

p(x,"x,Yt" ,z,vz, Y 
t) of a particle becomes approximately independent of 

the angular vector 3, within an action-angle family determined by 

Eqs. (l.l), i.e., 

PCX,” x,...,t, E P(?,Q,W : P&W. (2.3) 

One may interpret P(‘f,t) as (2~) -3 
(or C2nJwd, when the number of 

degrees of freedom is d f 3) times the density of probability in 1 

space, because the canonical nature of the transformation (x, y, etc.) 

+ ($,I1 implies that the probability per d31 is 

; j- 2ndf3i P(f,iS,t), [ 1 i-1 0 

with or without (2.3). 

The time evolution of the asymptotic form P(?,t) is determined by a 

partial differential equation that we shall formulate shortly as the 

second part of the hypothesis. F4 Before turning to this equation, 
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however, let us motivate Eq. (2.3) hueristically. For a more systematic 

treatment, the reader is referred to the Appendix. We feel strongly 

that the hueristic argument is important because it helps to show that 

the results of the systematic treatment are not artificial consequences 

of what may otherwise seem to be some arbitrariness in the starting 

point from which the systematic treatment proceeds. 

We motivate Eq. (2.3) in three steps. First, we try to argue, with 

more precision than in the Introduction, that after enough time has 

passed, for small y, any differential volume of probability in phase 

space becomes spread by the laws of motion (1.1) along orbits on the 

dynamical tori. 

To do this, we begin with the observation that, in general, the 

vector function 2 depends nontrivially on 1. Thus, points initially 

close to one another on two close but distinct tori must become 

increasingly far apart as time passes. Accordingly, any differential 

volume of probability must become stretched out, as time passes, like a 

drop of ink in a river whose flow speed varies nontrivially with 

depth. F5 

This is not yet what we want to show, however: Continuing the river 

metaphor, we want to show that the profile of the ink drop at any single 

depth spreads along the general flow direction, not just that the 

profiles at different depths move away from one another. It should be 

easy to see, however, that the former spreading is a consequence of the 

latter, because of the noise terms in (l.l), which ensure not only that 

probability flows along Hamiltonian tOPi, but also that it diffuses 

across tori; just as the ink drop diffuses up and down while the river's 

current draws it downstream. 
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In mathematical terms, we have just argued that an initial "dot" of 

probability centered at T 5 I, and .?j : #j, evolves into a ribbon of 

probability clustered about the set of points with 7 = 1, and 1 = ?f, + 

Z'(lO,T, where the parameter T ranges over an interval whose length 

grows steadily as time progresses. We want now to argue from this--as 

the second step in our motivation of (2.3)--that after some time, any 

phase-space volume of nonzero probability must spread to fully cover 

whatever torus it might intersect initially. 

We can do this directly for any torus for which there is no triplet 

z of integers such that 

+ ‘, + 
n-w (IO) = 0. (2.4) 

In this (noncommensurate) case, we laiow that the set of all points of 

the form 1 = I,, 3 = 3, + :'(jo)~ is dense in the torus 1 = To [141, and 

therefore the steadily elongating ribbon of probability, necessarily of 

finite width because of diffusion, ought eventually to fill out the 

entire torus. When (2.4) is satisfied, by contrast, we cannot reason in 

this way; but since such commensurate tori, being defined by integers, 

are necessarily of total measure zero, continuity, together with 

diffusion across tori, might possibly ensure the same cOnclUSiOn. 

Equation (2.4) is our first example of thermal resonance, by which 

we shall mean in general an obstruction to our smoothing procedure 

localized on a countably dense set of points in phase space. F6 The 

second example will occur in our formulation, below, of the partial 

differential equation that determines the evolution of PCf,t). We are 

assuming here, and we shall assume again below, that continuity and 
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diffusion together tend to erase whatever structure thermal resonance 

migllt otherwise set up in probability distributions. As indicated in 

the Introduction, we shall propose in Section V some simpler settings in 

which this assumption might be more carefully scrutinized. 

(Note that in systems with only one degree of freedom--in which 

case Pi' has only one component--the commensurate condition (2.4, reduces 

to w' : 0, which can only be satisfied at isolated, non-dense, values of 

the one-component action I., 

For the last step in the hueristic argument that we have just 

interrupted, we must guess--as seems natural intuitively--that the 

process of torus-covering that we have just described tends to smooth 

out any dependence of the probability P on the internal torus coordinate 

triple 3, and thus we are led directly to (2.3,. Deferring, as we have 

already indicated, a more systematic derivation to the Appendix, let us 

now take (2.3, for granted, and proceed to the differential equation 

that determines its evolution in time. Once again, we shall argue 

informally, leaving a more systematic treatment to the Appendix. 

In order to see how the desired equation comes about, imagine 

substituting the ansatz (2.3, into the full Fokker-Planck equation 

(1.4,. It should be clear that the result is explicitly &dependent, 

even if P itself is not, because of the $-dependence of the variables 

X,Y,Z," xl"y'"z' according to Eq. (2.1,. A differential volume of 

probability that streams approximately along a Hamiltonian orbit on a 

KAM torus sees this e-dependence as giving rise to a rapid oscillation 

in the environment through which it passes. The explicit periodic time 

dependence expressed in (2.1, also contributes to this oscillation. It 

seems reasonable to suppose that one should average over this rapid 
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oscillation in order to obtain the persistent effects of the 

Fokker-Planck equation on the asymptotic form P(f,t). 

Let us now work out in detail how this averaging is to be done for 

one representative term in (1.4). The reasoning that we shall apply to 

this example will also be suitable for the remainder of the 

Fokker-Planck equation, whose averaged form we shall then be able to 

write out in full without further argumentation. 

We first comment, however, that if the dominant contribution 'cc the 

evolution of P(f,t) is indeed determined by such averaging, it should be 

self-consistent to assume at the outset that P(f,t), in its dependence 

on time, varies slowly compared to the oscillations being smoothed away. 

We shall adopt this assumption in what follows. 

Consider now the sample term F7 

ap aI I ap' v -= [ 1 v - - x ax xax aI I * (2.5, 

In order to average this over the rapid oscillations encountered by a 

particle moving with the Hamiltonian flow, we should replace Ff in (2.5) 

W 3, + t:'(?) for some arbitrary a o, and then average over a time 

interval of some intermediate length to, long with respect to the time 

scale of environmental oscillations, but short compared to the time 

scale over which P(?,t) varies. Thus we advocate the replacement 

t+t0/2 

vx g (f,$,t, + 2_ f dt' vx g &8,+t&~,,V, 
t0 t-to/2 [ 1 
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t+r/2 

Iapd,t,lim~~ dt' v,> 
a11 [ 1 (~,>o+tl:(?,,tV. (2.6) 

T" t-r/2 

The passage to the final factorized expression in (2.6) follows from our 

assumption that P on the one hand, and on the other hand the variables 

x,Ytz, etc., vary on very different time scales. 

It is clearly important that the averaging in (2.6) result in an 

expression manifestly independent of the arbitrary initial vector 8,, 

because our goal is a differential equation for a density function of ? 

and t only. We can ensure this as long as there is.&q rational linear 

relation between the components of :' and the fundamental angular 

frequency Ci that governs the explicit periodic time dependence in (2.1), 

i.e., as long as there are no integers In,} and m such that 

;; :’ . +ma=o. (2.7) 

In this case, when one expands the final integrsnd in (2.6) as a 

Fourier series in powers of the expi.8 
3' 

and of expiSlt', and then makes 

the substitution 3 = 3, + t':'(lJ, the only term in the multiple series 

that makes a nonzero contribution to the average is the term in which 

all the powers are zero. Thus we may write 

t+'1/2 

lim ; sdt' a11 
T" [ 1 vx r 

t-T/2 
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= (gy' ,:::7 [,f, I; 2) [vx >] cLJ,tlJ 

3 
S<JdB" ari 

c2x,3 x ST ' ' (2.8) 

leaving us with an expression manifestly independent of Q,, and also of 

t. 

When some relation of the form (2.7) G satisfied, we cannot a 

priori factorize the averaging process as in (2.81, and thus we cannot 

show directly that the last expression in 12.6) is independent of 3,. 

This is our second example of thermal resonance. It is tempting to 

suppose that since actions ? that are resonant according to (2.7) are 

distributed densely among actions that are not--and since, collectively, 

they must have measure zero because they are determined by 

integers--continuity assures that (2.8) is appropriate for all 1. We 

shall assume in what follows that this is so. As already indicated, we 

defer a more critical discussion of this assumption to Section V, and to 

Refs. [4] and [5]. 

(In case the reader wishes to be convinced in advance that it is 

not self-evident that this assumption ought to be used freely in 

practical calculcations, we note here one example of a possible 

weakness: The factorized limit (2.8) may indeed apply to all values of 

f, but perhaps it is not approached everywhere at the same rate. I.e., 

there might always be, as in the Gibbs phenomenon of Fourier analysis 

[151, a set of f's (perhaps a dense set) for which the value of the 

first expression in (2.8) is far from the value of the last expression, 
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even though the measure of this set might approach zero as time beoomes 

infinite.) 

When the full Fokker-Planck equation. (1.4) is transformed according 

to the formal procedures that we have just introduced, the result is 

ap ap 3 

at+aI, 
<$X 

1 

a11 a11 a11 a11 
-+v - 

(2?l,3 at 
x ax -+"yaY+" 2. a2 

a11 a1i 
- CW:X + axg) r - $Y + ayg) F - 

aI 

X Y 
(w$ $ > 

z I 

= Y, 
[ 

P+&<§*3vx$> 
I (a) X 1 

+ VW: [ 3 a21. 
a2p 3 

~<peL~>+-<~2LL- a1i CJ > 

I (27~)~ avx2 aIla j 
(2*,3 avx avx 1 

+ similar expressions for y and Z. (2.9) 

In this equation, aP/at refers to the time derivative with ?! (and the 

trivial dependence on 8) fixed, in contrast to (1.&J, where the time 

derivative is taken with x, vx, etc. fixed. The time derivative of Ii 

in (2.9) is to be taken with x, vx, etc. fixed. 

We can simplify Eq. (2.9) in two ways: 

First, we observe that the expression in curved brackets in (2.91 

is equivalent to dIi/dt when time evolution is governed by Eq. (l.lJ, 

with Y = 0, and when the v's are properly interpreted as velocities. 

However, dIi/dt is identically zero under such conditions, according to 

Eq. (2.2). Therefore, we may completely ignore the summation on the 

left-hand side of (2.9). 
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Second, the right-hand side of Eq. (2.9, can be reexpressed as a 

perfect divergence, so that Eq. (2.9) can be made to have the structure 

of a continuity equation, just as the full Fokker-Planck Eq. (1.4, does. 

To show this, we prove below that 

$<e$ d38-J a11 ->:1, 
I (2lrJ3 xavx C2.10aJ 

(2.1ObJ 

and similarly for y and a. From (2.101, and from the conclusion of the 

preceding paragraph, it follows that (2.9) reduces to 

ap a - 
at = y aI, 

[ 
P<bd3ev a11 3 aI, aI 

(2x,3 x ;r;; 
>+wx2g<4""-- 

.I (2x,3 a"x a": ' I 

+ similar expressions for y and z. (2.11) 

(It should be easy to see that when the system has an arbitrary number, 

d, of degrees of freedom (so that one has d x's and v's, and d 

components of 7 and J,, then Eq. (2.11, is still suitable, as long as 

d38/(2x,3 is replaced by dd8j(2x,d.J Equation (2.11) generalizes 

Kramers' [91 Eq. (14,. 

To verify Eqs. (2.lOJ, we use the identities 



-2o- FERMILAB-Pub-83/93-THY 

aI, av, 
3iq=-ae, 

ae, av, 
axk = 

- 
aIi , (2.13) 

which followF8 from the canonical nature of the variables [if, 1) and 

(:, G). With the help of (2.131, Eq. (2.10a) can be established as 

follows: 

3 a1i +$Y =v --> 
i (2lr13 x av x 

3 av aI, 
= <.jLc x 

! 

a a1i -- 
(2llJ3 aI, av - + ‘x.aIi av ’ x x ) 

3 
: <p.L. x-- 

av aI, avx ax ax 
(2llJ3 ( 

aI, av x 
--+k ae, aI, 

r 1) 
vx aI, > 

= 

( 

i+a v- 

[ I) =:: ~~~~~v~~j>a’; x~;, 
> 

= 1. (2.14) 

(Note that we are able to discard integrals of perfect Cl-derivative, 

because the arguments of the derivatives are 2n-periodic in the 0's.) We 

may verify (2.10b) in the same way: 
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&Cd 

d38 aI, a1j 
---> 

j (2rj3 avx avx 

=<4 & [(+q$+c$)sj> 
3 

c&T AL ax a ax = 
(2lTJ3 

K 

--x$&T+ (ik&)]> aej aIj 

3 aI 

i 

ae 
= <J= j-L+&& .$> 

(27713 1 

aI 

avx aIj 
xj x 

= <6 
d38 a211 > . 

(2~1~ av 2 x (2.15) 

III. NONLINEAR RESONANCE AND THERMAL AVERAGING 

In the first part of this seotion, we shall present a brief 

introduction to the theory of nonlinear resonance, in the specific 

context of system (1.1). In order to help justify the attention that we 

are paying to this general subject, we shall also provide an example of 

computer-generated data that shows, in a direct way, a nonlinear 

resonance in the process of rapidly drawing particles away from the 

center of a beam in an e+e- storage ring, thereby contributing to the 

enlargement Of Cy2>. This example will appear again in Section IV as the 

object of a model application of thermal averaging. 

We shall discuss the basic structure of thermal averaging near 

nonlinear resonance in the second part of this section. 
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1. General Discussion of Nonlinear Resonance 

In the narrowest sense, the term "nonlinear resonance" (not to be 

confused with thermal resonance) refers specifically to structure that 

one encounters in solving Eqs. (1.11 (with y = 0) with the potential g 

treated as a perturbation. In order to make this explicit, we shall 

follow custom [El by first introducing action and angle variables for 

the system of harmonic oscillators corresponding to Cl.11 with 

y z g I 0, and then expanding the nonlinear perturbations axg.and ayg as 

Fourier series' in the oscillator angles, and in time. 

The oscillator actions and angles 3 and 3 are defined by 

1 
Jx = zq 1;’ + x2u21 x 

$x 3 -tan-' [~/xuxl , (3.1) 

and similarly for y and Z. In the absence of damping, noise, and 

collision terms, 3 and $ vary with time according to 

(3.2) 

where : 5 (wx, w y' W,). 

Upon Fourier decomposition of the potential g, one finds the 

following expressions for the time evolution of J x and ex in the 

presence of the collision terms: 
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ix = -+I inx G, (5) exp i 

"," "9" 
[x +q ) 

4, = wx + z 
+ 
"9" 

(3.3) 

A similar formula holds for jy and 6 
Y' 

while Ja and 4 z continue to 

evolve according to (3.2). The summation indices 2 and n in (3.3) are 

entirely integral. The Fourier coefficients G are defined by 

G, (j) z ; dt b -2% 

“,” 

o T (2n)3 g[(~~‘2cos@,, (~~2~os~y,(~~2cos~s,t] 

r 1 

*exp - i p.4 + FJ . 
(3.4) 

(For a discussion of a complication ignored for convenience in (3.31, 

see Ref. [31, Section IV.2.b.) 

In substantial regions of phase space, one can ignore the summation 

terms that have nonzero z and n in Eqs. (3.3) and their y and z 

counterparts, because these terms oscillate rapidly, and therefore they 

make only small contributions to 3 and $ upon integration. In such 

regions, the dominant collision-related contributions to 3 and 4 come 

from the terms with vanishing d and n, i.e., 

=+ 

& z wx + $ 
x ’ 
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Note that whenever (3.5) is applicable, we may identify ? with 3 and 8 

with ;6, in which case the averaged Fokker-Planck equation (2.11) is 

insensitive to the nonlinear collision terms, axg and ayg, in the 

original equations of motion (1.1). 

There can be substantial corrections to approximation (3.5)--and 

therefore substantial collision-related effects on beam 

distributions--near values of 3 at which a nonlinear resonance 

condition, 

(3.6) 

is satisfied for some integral ; and n, because in this case the +(z,n) 

Fourier terms in (3.3) vary slowly, and can therefore make contributions 

to 3 and $ that can accumulate in time. To be sure, the set of all 3 

that solve an equation of the form (3.6) for some z and n should be 

dense in the set of all possible 3'9, and at first sight this must 

appear to undercut whatever validity one might otherwise ascribe to the 

distinction between nonresonant (corresponding to (3.5)) and resonant 

motion. However, one can assign widths 181 to regions of phase space in 

which any given Fourier term in (3.3) is resonant, and for all but a 

limited number of ;ls and n's, these widths are negligibly small for 

most practical purposes. 
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For the developments in the next subsection, and in Section IV, we 

shall need an approximate analytical description of an isolated strong 

nonlinear resonance (i.e., one whose width is not negligible). We shall 

present one shortly. However, for preparation, let us first discuss the 

general structure of strong nonlinear resonance in a qualitative, 

pictorial way. 

For this purpose, consider Fig. 2, which represents schematically 

the phase plane of some single-resonance-dominated Hamiltonian system 

analogous to (1.1) (with y = 01, but with only one degree of freedom, to 

be called y for definiteness. The closed curves represent the 

one-dimensional versions of the KAM tori at one instant of time. The 

region of strong resonance corresponds to the "island chain" of six sets 

of nested curves that do not enclose the origin. (Figure 2 is idealized 

in showing only one island chain. Several concentric such chains is 

comlon . Systems that exhibit two or more such strong resonances will be 

discussed explicitly in Section IV.l.) The resonance separatrix is the 

border between the orbit curves that enclose the origin and those that 

do not. The ooexistence of families of orbit curves that have two 

distinct topologies in this way is characteristic of nonlinear 

resonance. When the system has an arbitrary number, d, of degrees of 

freedom, then d-dimensional families of d-dimensional KAM tori that do 

and do not nest upon the origin coexist in this way under the influence 

of nonlinear resonance. If the nonlinear collision terms were absent, 

there would be only one action-angle family and all its nesting tori 

would be centered at the origin. 
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The resonant pattern depicted in Fig. 1 would arise from Fourier 

coefficients having indices (ny,n), with n 
Y 

: +6, in the one-dimensional 

version of (3.3). The distance from the Origin to the island centers 

would be given approximately by (2Jyo)1'2, where J a solves the 
Y 

one-dimensional version of the resonance condition (3.6). 

Figure 3 (from Reference [131) shows a concrete example of the 

effect of such a strongly resonant Fg pattern, observed in a recent 

computer simulation El63 of an electron-positron storage ring. The 

particles in this simulation were subject to Eq. (1.11, and all three 

variables x, y, and z were included. The horizontal and vertical axes 

in this figure refer to y/(2) l/2 1'2 and 3/wy(2) , respectively. The 

points in this figure correspond to one particle's orbit, projected onto 

the vertical phase plane. The particular points shown here correspond 

to the phase space position of the particle at successive equally spaced 

time intervals of duration T, the repeat period of the oollision 

potential g. The total equivalent real time elapsed is equal to about 

(3.7)*(2/Y), which would be about 3.7 frictional relaxation times if the 

collision terms were absent. 

In this simulation, at least one test particle out of a statistical 

sample of less than one hundred [l63 was observed to be drawn rapidly to 

the islands of the sixth order resonance in this way. In order to 

appreciate how remarkably rapid this is, one must realize that if there 

were no strong resonance (or any other comparable structure) so that the 

nonlinearities in g could effectively be ignored, one would have 

expected [71 that only one part of this model beam in about 
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4-l (18)~~ exp $ I 1O67 (3.7) 

would reach the largest radius (18) achieved by any point in Fig. 2 

within about four damping times. The rapid transport seen in this 

figure is the process that we shall try to account for quantitatively in 

Section IV. 

We now proceed to outline the most common approximate analytical 

description of nonlinear resonance. Our goal will be the derivation of 

a small number of formulae that analytically characterize resonance 

islands and their immediate environs in a simple way. These formulae, 

especially the one that describes the separatrix, will be used 

prominently in the next subsection, and in Section IV. 

The conventional approximation to Eq. (3.3) near a resonance of the 

*(z ,n) Fourier terms is ([a]; see also C33, Section IV.2.C) 

j 
Y 

z-in G y + 
"I" 

(P)expi[G*$ + F] 

+in G 
Y -?I,-" 

= 2nyIG+ 
“I” 

+ Arg G+ CP,l, 
“9” (3.8) 

aG+ a2G+ 

6y:: y w + +(Pl + 1 
Y i.x,y,z 

(J-JOJi 1 1 aJi;;; (3’) , (3.91 

and similarly for x and s. The constant reference vector 3° is a 

solution of the resonance condition (3.6). The second equality in (3.8) 
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is possible because G+ n n and G + must 
, -n-n be complex conjugate, since 

(recall (3.4)) g must be real. 

The general solution to this system of equations is not hard to 

derive [El. However, when the number of degrees of freedom is greater 

than one, seine intricate notation must be introduced. Since the 

structures to which we want to draw attention are already fully present 

when the number of degrees of freedom is just one, let us for simplicity 

ignore the dynamical variables x and z from now on. (We have chosen to 

retain the particular variable y because in Section IV we shall apply 

the formula below to the data shown in Fig. 3, which refers specifically 

to the vertical phase plane.) When necessary, we shall indicate what 

technical modifications are required when additional degrees of freedom 

are present. 

When y is the only dynamical variable, Eqs. (3.91 and (3.10) reduce 

to 

j . -ny A sin n 
Y Y [@Y - 

wrt + al , 

:: wr + (J 
Y 

- Jyo) B/n; . (3.10) 

The definition of the parameters A, a, and B in terms of G and G 
010 

at J 0 
nys* 

is self-evident. 
Y 

In what follows, we shall assume without loss 

of generality that A and B have the same sign; this can always be 

arranged by a suitable shift of the offset phase a. We shall also 

assume without loss of generality that ny is positive; this is simply a 

matter of convention, since the (ny, n) and [-ny, -n) Fourier terms 

contribute to (3.10) with equal magnitude. The resonance frequency m, 

in (3.10) is defined by 
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2n n 
dG 

wr 
z----:w 

T n 
Y y 

+ 2 (J dJ 
Y y 

'1. (3.111 

The second equality in (3.11) follows from the resonance condition 

(3.6). 

To make our work simpler, we define 

,a E ny (4 
Y 

- wrt + al , 

8: (Jy - Jyo)/" Y 
. (3.12) 

These variables are canonically conjugate, since I$ 
Y and Jy are. The 

primary variables y and v have period 2nn as functions of 0, 
Y Y 

since 

they have period 2a as functions of @ 
Y' 

When Eqs. (3.101 are rewritten in terms of these new variables, one 

obtains the canonical equations of motion associated with the time 

independent Hamiltonian h(sgnB), where 

h : \Bl [is2 - (+) oos '#'I q ; IBI $' - IAl 00s '+. (3.13) 

This function is formally equivalent to the Hamiltonian of a simple 

gravitational pendulum with moment of inertia equal to IBM-', and with 

mass times length times gravitational constant equal to IAl. (The factor 

sgn B E IBI/B has been deliberately included in the relation between h 

and the Hamiltonian that generates Eqs. (3.10), so that h can always 

have a properly positive kinetic term.) The pendulum also appears in a 

natural way when there are 622 degrees of freedom. In that case, one 

solves Eqs. (3.8) and (3.9) by linearly mixing the components of the 

oscillator action 3, and also the components of ;6, so that (d-1) of the 
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resulting canonically conjugate pairs have time-independent actions, and 

angles linearly dependent on time, as in (3.2), while the one remaining 

pair forms a~pendulum-like system, as in (3.10). 

The pendulum analogy leads directly to the simple formulae that 

constitute our real objective, as follows: It should be intuitively 

apparent that the island curves in Figure 1 correspond to an equivalent 

pendulum that oscillates indefinitely about one of the potential minima 

@ = 2?Tm, where m is an arbitrary integer; while the curves that enclose 

the origin correspond to an equivalent pendulum that rotates 

indefinitely, increasing or decreasing by 21 during every rotation 

period. An oscillating pendulum means 

-IAl 5 h < +IAl t (3.14) 

because at h = -IA\ the pendulum is in stable equilibrium, at rest 

pointing down, while at h E +IA~ the pendulum has just enough energy to 

come to rest pointing straight up, in unstable equilibrium. Similarly, 

a rotating pendulum means 

+IAl < h. (3.15) 

Therefore also storage ring motion in a resonance island is equivalent 

to inequality (3.14), while storage ring motion just outside an island 

chain is equivalent to (3.15). 

The separatrix must correspond to h = +IA[. According to the 

definition (3.13) of h, this can be rewritten in the simple form 
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l/2 

g= f2 (;) co9 (412) . (3.16) 

Expressions (3.14) - (3.16) are the formulae that we wanted to 

derive. 

2. Thermal Averaging Near Nonlinear Resonance 

Our goals in this section are: to show how to rewrite the averaged 

Fokker-Planck equation (2.111 near nOnlinear resonance in a form more 

suitable for calculation; and then to use this form to investigate the 

structure of the averaged Fokker-Planck equation near a separatrix. As 

before, we shall work within the specific context of one-dimensional 

systems, but our results are easily extended to systems with additional 

degrees of freedom. 

In order to rewrite the averaged Fokker-Planck equation, we need 

information about the canonical action I. In general 1171, we may 

self-consistently FlO set I = b,$?dO, where 5 indicates a contour 

integration along a closed KAM curve in the direction of Hamiltonian 

flow. In light of (3.10) - (3.131, this leads to 

I = (2nJ-l JgdQ = (2rr)-' CsgnB) #"' 
l/2 

6 Id@11 h + lAlcosOj 

Z I(h). (3.17) 

Unfortunately, I(h), unlike h itself, is not an elementary function 

of Ji and @. For this reason, the manipulations that follow will 

transform (2.11) from an equation for P(I,t) to an equation for P(h,tJ : 
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P(I(h),t). The substitution of h for I is a good thing, at least 

conceptually, because the action I is necessarily discontinuous in some 

way (see below) at the borders (separatrioes) between distinct KAM orbit 

families, while h, according to (3.13), is manifestly smooth everywhere 

in phase space near the curve J = J '. 
Y Y 

To proceed with our revision of the averaged Fokker-Planck 

equation: We begin by substituting Eqs. (3.1) (with x replaced~by y) and 

(3.12) and (3.13) into the first integral on the right-hand-side of 

(2.11) (suitably modified for a system with one degree of freedom) in 

order to obtain 

<~~vy+~~~<vy~> 
Y Y 

= g 5 ?$ vy [Bgg + Atsin@) %I sgnB > 
Y Y 

CB&- + A(sin@) &y] sgnB > 
"YWY Y 

lb Jr +k ( ?F!s si”2 

T+= 0 “Y 
[wrt-a+Q/nyl 

“YA - 2 sin2 [w,t-a+O/ny]) sgnB 

= g 4 2 +a(",g+ Jyo). 
Y 

(3.18) 

This can be simplified further by exploiting 
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(3.19) 

(The last equality in (3.19) is just the first of identities (2.13) in a 

different notation.), Because of (3.181, we have finally 

<p, ?A->= 
2~ Yav 

Y 
+ 4 (nyJ+ Jyo) da. (3.20) 

The notation 4 on the right-hand-side indicates integration over a 

single closed curve of constant h in the a-3 plane (wrapped into a 

cylinder by the identification.of @ = 0 with @ = 2vny). The direction of 

the integration contour in (3.20) must be the direction of the 

Hamiltonian flow. 

In a similar fashion, one can also derive 

<$j$+~>;($@~ -$2x2Jy+ny2A2q 

C Y I 

dg sgnB. 1 
(3.21) 

When Eqs. (3.20) and (3.21) are substituted into (2.11) (modified 

for one degree of freedom), we obtain, after two more applications of 

the chain rule, 
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Jyo)dO-ny2A 

(3.22) 

This is the desired revision of the Fokker-Planck equation. Note for 

future reference that the product 2nCdI/dh)P on the left-hand-side is 

the density of probability per unit length along the h axis within a 

single KAM orbit family, since 2aP is the density per unit length of I. 

We want now to evaluate the coefficients in Eq. (3.22) at the 

resonance separatrix. This will reveal the discontinuities mentioned in 

the Introduction as the second difficulty connected with the idea of 

thermal averaging. These discontinuities come about because the curves 

to which the action I and the circuit integrals in (3.22) refer can 

approach the. separatrix in three topologically distinct ways: [a) 

through origin-enclosing orbit curves that lie between the origin and 

the island chain; (b) through origin-enclosing curves that lie beyond 

the islands; and (cl through orbits that nest within a single resonant 

island. The parts of the separatrix that correspond to each of these 

distinct limits, in the particular case of Fig. 2, are shown in 

Figs. 4a-c. We shall soon see that each of these limits produces 

different limiting values for the ciruuit integrals on the right-hand 

side of (3.22), and leads to a divergence in dI/dh. 

In view of Eq. (3.161, limit [a) must correspond to 
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(3.23aJ 

(3.23bJ 

The limit curve of type (c) is formed by joining the two sets (3.23) 

and (3.23b), and then restricting Q to lie between (2m-1)~ and (2m+lJTr, 

for some integer m. It is clear that, in any calculation related to 

Eq. (3.22), circuit integrals around a type (0) part of the separatrix 

should be equal to n -' 
Y 

times the sum of the circuit integrals around 

the type (a) and type Cb) parts. 

In these three limits, the first integral on the right-hand side of 

(3.2) takes the three distinct values 

ny-' d (nyJ7+ JyO) d@ 

2nn 

= (-sgnB)ny-' .fo 'iJ,'_Eln,l (i) 1'2 loos (@/2)1ld@ 

2n 
= (-sgI+ly-' (2rnyJyo-2ny sin 

0 
< dx) 

: (-sgnB) [2rJy"-8ny (i) 'I21 
(3.2’Ia) 

(limit (a)), 
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(3.24bJ 
E A 

l/2 
(+sgd) ~TJ o + 8n 

Y (3 ] Y B 
(limit (bJJ 

CsgnBJ * i * ny k 
0 

l/2 

(limit (c)J. (3.24~) 

The factor (-sgnBJ enters the calculation in (3.24~) as the sign of the 

directed differential d@ in the circuit integral on the left-hand side. 

This sign takes this particular value for the following reason: The sign 

of this d@ is by definition the same as the sign of the time derivative 

0 in Hamiltonian flow. However, 6 =$B in Hamiltonian flow, and the 

sign of g is opposite that of n in limit Cc), Y according to (3.23~). 

Therefore, sgn Cd4 in circuit integral) = sgn [BBJ = -sgn CBny) = 

-sgnB. In the case of (3.24bJ, the corresponding factor is +sgnB. 

In a similar way, we also have 

, 4B A 1’2 i2J omnn -- 
“Y 0 B Y 0 

i ‘I2 ) 
Y B 

(limit (a)), 

y &ny$?+JyoJd@ q 4 - - -4B A 1'2{-2J '-nn 

nY “Y 
0 B Y Y 

(limit (bJ J, 

(3.25aJ 

(3.25bJ 

(3.25~) (limit (c)J, 

and 
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n 2AsgnB 
- y 

4 

( An2 
- y [2R+n(R2-;J-2R(R2-'J""oos-'($)I 2 

(limit (a)), (3.26aJ 
2 

- % [2R-~(R2-~J+2R(R2-1)1/2cos-~ ;] 

(limit (bJJ, ' (3.26b) 

Any2R 
- - 11+ut2..1)"2 

3 gcos-' 2 ] 
( )> 

An 2R 
= - y [l+(R 2 -1) l/2 

3 (n-cos-' ;) ] 

The parameter R is defined by 

(limit (c)j. (3.260) 

JY" REF. 
2n 

(BJ “2 

Y A. (3.27) 

In deriving Eqs. (3.251, we have used formula 3.648.2 from the integral 

compendium of Gradshteyn and Ryzhik [181. 

To complete these separatrix calculations, we have 

2i7 g = ;;;;;, 5 Id91 Ih + IAl cos @1-1'2 

2n 

= CsgnBJ "Y 
12Bj"2 '0 

da [h + IAl cos @I -l/2 
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. -(sgnBJ 

as h+l~l+ (limits Cal and (bJJ, (3.28) 

cos-'(-h/Ill) 
2n c = (sgnB) 

dh 12B11'2 
* 4 l f, dX [h + IAloos~]"~ 

as h-c IAI- (limit (C)J. (3.29) 

What is the physical origin of the singular behavior evident in 

(3.24) - (3.291? Two possibilities come immediately to mind: 

First, it is possible that thermal averaging could be unsuitable 

near a resonance separatrix, because the averaging formalism neglects 

chaotic orbits, which tend to proliferate near separatrices 181. 

Second, it is also possible that thermal averaging could be 

unsuitable near a resonance separatrix because orbits increasingly close 

to a separatrix spend indefinitely increasing amounts of time near the 

finitely many unstable equilibria at @ = (2m+lJl1 (integer mJ. Thus, 

strictly speaking, near a separatrix, one must wait an infinite amount 

of time before nearby points on nearby orbits spread enough for the 

fundamental ansatz (2.3) of dynamical averaging to make sense. 

Lacking a deeper understanding of these possibilities, let us now 

proceed to a discussion of solution methods for Eq. (3.22J, assuming, as 

a working hypothesis, that this equation is suitable for application 

despite the topological singularities in its coefficient functions at 

h = IAl. 
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IV. SOLVING THE AVERAGED FOKKER-PLANCK EQUATION FOR ONE-DIMENSIONAL 

SYSTEMS 

Equation (3.22) and its higher-dimensional analogues represent a 

considerable simplification of the original Fokker-Planck equation for 

P(Y,Vy,..., t). Unfortunately, when the number of degrees of freedom is 

greater than one, even the dynamically averaged Fokker-Planck equation 

seems too complicated at this writing to be practically useful. (I have 

looked for variables in which the general averaged Fokker-Planck 

equation might be separable near nonlinear resonance, but have had no 

su0cess.J 

The situation is different when our system has only one degree of 

freedom. In this case, there are several things that we can conceive of 

doing, either to extend the range of problems to which Eq. (3.22) may in 

principle be applied, or to extract physical information from Eq. (3.22) 

in a quick and direct way. 

We describe three such techniques in the first three parts of this 

seation. It is hoped that they can suggest fruitful approaches to 

higher-dimensional problems. In the fourth part of this section, we 

apply one of these techniques to the data shown in Fig. 3. 

1. More Than One Resonance 

We have so far formulated two convenient approximations to 

Eq. (2.11) for two distinct but coexisting types of regions in the phase 

plane: Near a resonant island chain, we have Eq. (3.22); while between 

the chains, where the nontrivial Fourier terms in 13.3) can be ignored, 

we have the result of identifying I with Jy and 8 with +,, i.e., 
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(4.1) 

We want to show here that in fact (3.22) goes over smoothly to 

(4.1) when h becomes large, i.e., as one moves away from any particular 

resonant chain. We do this because it enables us to suggest that one 

might be able to construct simple approximations to evolving probability 

distributions throughout the whole of phase space, in the presence of 

two or more strong nonlinear resonances --corresponding to two or more 

distinct functions h--in the following way: Near each island chain, one 

solves for the evolution of P by using Eq. (3.22), into which one has 

inserted the parameters J o 
Y ' nY' 

A, B appropriate for that chain; well 

between the resonant chains one solves for P using (4.1); finally, one 

matches the large-h extrapolations of the near-resonance solutio"s to 

the inter-resonance solutions, using a continuity condition. Note that 

if (4.1) were not the large-h limit of (3.22J, such a co"ti"uity 

condition could probably not be imposed self-consistently. 

In brief, Eq. (3.22) has Eq. (4.1) as a limit because when h is 

large, curves of constant h are Curves of approximately constant J 1 
Y 

JY" 
k ny (2h/lB1)1'2. This means that I, as defined by (3.17), satisfies 

I = & d Bd@ : LWBJ I J~-J~OI, (4.2) 

and that (recall sgn(dp) : sgn B $= sgn [Bn 
Y Y ,“J’J (J -J 
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-1 
"Y 

5 (ny g+ ~~0) da : 2x ~~ sgn [B(J~-J~D)I , 

ny-2 ]B} .$$(nyd;(+Jy“) d@ : ny-2B l ~ITJ~~J~-J~'~:~~J~ g 
9 

ACsgnB) 6 

These in turn mean that for large h, (3.22) becomes 

ap E = y k Jy (SPn [B(J -J 
Y YO)' 

=y+JyU+W 22 

Y 
Y aJyJ " 

(4.3) 

(4.4) 

which is what we wanted to show. 

A similar limit can easily be formulated and proved for systems 

with more than one degree of freedom. However, the matching procedure 

described above and made possible by this limit can in fact alWayS be 

formulated self-consistently only when the dynamical system has just one 

degree of freedom. The reason for this is, as we now explain, to be 

found in condition (3.6), which determines the values of 3 near which a 

given Fourier term in (3.31 can be strongly resonant: 

When a system has d degrees of freedom, the vector 3 has d 

components and therefore the set of solutions to (3.6) (suitably 

generalized from d I 3) for fixed ': and n is a surface of dimension 

d - 1. It follows that when d is greater than one, two solution sets 

for two distinct (d + ')-triples I<,n) can (and very often do--see, for 

example, Ref. [12]) intersect in 3-space; and therefore phase space 

regions in which different Fourier terms are strongly resonant can (and 
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very often do) interpenetrate. This interpenetration is what subverts 

OW matching procedure, which requires that there be extensive 

nonresonant free space between nonlinearly resonant regions. 

Even when d = 1, of course, the matching procedure can be 

inapplicable when two concentric resonant island chains are so close in 

radius that there is no room for an asymptotic buffer between them, or 

so close that chaotic orbits can proliferate 183, precluding thermal 

averaging altogether. 

2. Steady State 

Within the framework of dynamical averaging, "steady state" can 

only sensibly mean aP(?,tJ/at Z 0. We are going to solve this equation 

exactly, and analyze the solution, for systems with one degree of 

freedom. Note that this steady state is not the same as 

aPh,vx,..., tJ/at E 0, because of the explicit time dependence in the 

definition, (2.1J, that relates x, v 
x' 

etc. to 1 and 8. Nor is it 

obviously the same as the statement that P(x,vx,...,tJ be periodic in 

time with repeat period equal to that CTJ of Eqs. (l.lJ, although this 

is an aesthetically appealing possibility. We shall in fact argue below 

that in systems with just one degree of freedom, the steady stats of 

thermal averaging is indeed periodic in this way. When the number Of 

degrees of freedom exceeds one, however, we do not even know how to 

argue that a steady state exists at all. 

For convenience, let us rewrite the thermally averaged 

Fokker-Planck Eq. (2.11) (for arbitrary dimension d f 3) schematically 

as 
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3P 
x = (2lr) 

-d 8 a aI K Z (2~J-~y - 
I i 31,. 

al(l) 
(4.5) 

For d = 1, near a resonance, let us also .rewrite (3.22) as 

& (g PJ = (2") (2lr) -' k [S'(h) a + B(h) ZIP. 
(4.6) 

It is clear that K(I,t) = K(h,tJ in one dimension. 

When the number of degrees of freedom is equal to one, the 

subscripts i and j can be omitted, and the condition aP/at = 0 

immediately integrated once: 

constant= K = y [a(I) + b(1) s] P 

(= y [g(h) + i?(h) &I P near resonance). 
(4.7) 

We shall determine the constant in (4.7) shortly. In order to do 

so* however, we shall need to be able to identify K with the current of 

probability along the I-line: 

In general, for any d, it is tempting to interpret d as the current 

of probability in f-space, since P is always (2nJSd times the density of 

probability in f-space, so that (4.5) is manifestly in the form of a 

co"ti"uity equation. To make this rigorous for d>l, we would have to 

formulate a somewhat elaborate argument in order to rule out terms like 
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(4.81 

where F 
ij 

is some antisymmetric matrix-valued function that could appear 

in the current while making no contribution whatsoever to its 

divergence. Fortunately, we shall only need to know the current for 

d = 1. In this case, we have only to rule out an additive constant in 

order to identify the current with K. But such a constant must be zero, 

because otherwise the current would not vanish in any region devoid of 

probability (i.e., with P z 01, and that would be physically 

unreasonable. 

We now show that in a closed system this time-independent current K 

must in fact equal zero, by the following topological argument: When the 

number d of degrees of freedom is equal to one, KAM tori--as closed 

curves--enclose fully planar subsets of the phase plane. (KAM tori 

cannot enclose anything when d>l. In general, only a (26-l) dimensional 

set can enclose part of a 26 dimensional phase space, while KAM tori 

only have dimension d.) Therefore, the current K,must be the rate at 

which probability flows into or out of some (time dependent) closed 

finite-measure region of the phase plane. If K # 0, the total 

integrated probability in this region must become either negative, which 

is absurd, or infinite, which is equally absurd, since the total 

probability in all of phase must always remain equal to one. 

It follows immediately, by integrating (4.71, that in the steady 

state, a closed one-dimensional system has, in a KAM family, the 

probability distribution 
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B(h'J dh, - 

I 

near resonance) , 
6(h' J (4.91 

where I 
0 

and ho are a ome arbitrary reference values, and N is a 

normalization scale. 

As for d>l: It is tempting to guess by analogy that h vanishes in 

the steady state even when d>l. This is in principle not likely, for at 

least two reasons. First, there appears to be no geometrical structure 

that forces d = 0 when d>l. Second, as far as I have been able to 

determine, the d first-order differential equations Ki = 0 (i=l,...,dJ 

are in general not simultaneously integrable, unless all d degrees of 

freedom are uncoupled. 

We have two observations to make concerning the one-dimensional 

solution (4.9). 

First, the various constants N for the various coexisting 

action-angle families are determined by overall probability 

normalization, together with boundary conditions that relate the 

distributions in adjoining families. The most natural-seeming boundary 

condition (although we have no proof that it is correct) is continuity 

of P as a function of y and v 
Y' 

Near a resonance, this means that 
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(4.10) 

where the left-hand side can refer to the limit of orbit curves that 

enclose the origin either within or beyond the island chain, and the 

right-hand side can refer to the limit of the curves in any one of the 

ny islands in the chain. An immediate consequence of (4.10) is that--at 

least within approximation (8.22)--the steady state probability 

distributions in all resonance islands in a single chain are identical 

(up to rotation) and therefore the entire probability distribution in 

the y-vy plane repeats itself in time T, because so does the pattern of 

orbit curves. Another immediate consequence of (4.10) is that the 

probability P has a discontinuous derivative at the separatrix, since 5 

and 5 are discontinuous at the separatrix, as we showed in Section III. 

Second, within approximation (3.22), the solution (4.9) peaks at 

the nonlinear resonance centers (3~ 0, @ = 2mJ. To see this, we need 

to know how % and B behave near a resonance center (i.e., h : -jA(J. A 

straightforward calculation near h = -1~1 yields 

H(h) . $+ (sgn BJ 

(4.11) 

Therefore 
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It follows that near h : -[AI, (4.9) is given approximately by 

P.. (constant) x exp 

Z (constant)' x exp -4 [IBIg + [A( (4-2mp121 

(4.12) 

(4.13) 

The last expression in (4.13) shows the promised peak explicitly. 

One might have expected this peaking a priori, since the points 

g q 0, 4: 2’Tm, are centers of stability --orbit curves in the islands 

oscillate directly about them and not about the origin--and we are 

conditioned by experience with the Botzmann factor exp-H/ET (which, 

however, does not apply to our explicitly time-dependent system) to look 

for peaks in probability distributions at stable points. 

Is the beam enlargement seen in real storage rings due at least in 

part to such steady state resonance peaks away from the phase space 

origin? It is likely that other effects, most probably peculiar to 

nonlinear resonance in higher-dimensional systems (see, for example, the 

second paper cited in Ref. [12]; for a critique of this example, see 

Ref. [31, Section V.3) are much more important. It might seem desirable 

at this point to discuss numerical estimates of the steady-state 

populations of nonlinear resonance peaks in one-dimensional models of 

colliding beams. We shall forego this, however, because the available 
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computer data [13] with which we might compare such estimates is not 

extensive enough for this purpose. In the fourth part of this section, 

we present a numerical estimate of a kind that is much better suited to 

the data at hand. 

3. Transport Flux 

In this subsection, we explain how Eq. (4.5) permits us to obtain, 

under certain co"ditio"s, a simple solution to the following problem: 

Consider a sample of one-dimensional particles, all of whose initial 

conditions lie close to the origin in the phase plane. At some later 

time, what isthe net outward flux of particles impinging on the border 

(i.e., part (aJ of the separatrix) of the action-angle family that 

contains the origin? 

Our simple formula for this rate is important for several reasons: 

First, there are reasons to believe that our derivation of this 

formula might not be seriously subverted by the a priori concerns about 

separatrices that we articulated at the end of Section III. In part, 

this is because the coefficient dI/dh in Eq. (3.22) makes no explicit 

appearanoe in our derivation; thus, we need not worry about its 

divergence at the separatrix. In part, this is also because we have 

restricted the statement of the problem to the border of the origin's 

orbit family. If the points at which flux were to be calculated lay 

beyond this border, then particles that contributed to the flux would 

necessarily have to sample a discontinuity in the coefficients on the 

right-hand side of (3.22), because they would necessarily have to 

penetrate a separatrix at some time between leaving the origin and being 
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counted in the flux. The freedom to impose this kind of restriction 

distinguishes the problem of flux from the problem of the steady state: 

As we explained in the preceding subsection, the normalization of the 

steady state cannot be determined anywhere in phase space without 

information concerning separatrix boundary conditions, about which we 

are fundamentally uncertain at this time. 

Finally, our formula for flux is much more suitable for application 

to the data shown in Fig. 3 than is our theory of the steady state. In 

order to apply the steady state analysis explained in the preceding 

subsection, we would have to compound the separatrix difficulties 

mentioned above with the uncertainty of an ergodic assumption with whose 

help we would try to infer the phase space distribution of an ensemble 

of particles from properties of the Brownian path of a single test 

particle. Such an ergcdic assumption might not be necessary if we had 

comparably detailed data on the paths of many more test particles moving 

under the same external conditions in the computer simulations of 

Ref. [161. Unfortunately, no such supplementary data appears to be 

available at this writing. 

For our derivation, we now paraphrase an argument originally given 

by Kramers [91 in connection with the similar problem of noise-driven 

barrier crossing. I have chosen to present this derivation in full, 

rather than simply to quote the result with the proper citation, so that 

assumptions involved can be as clear as possible to readers who may be 

new to this kind of analysis. 

We shall calculate the desired flux for times long enough that 

something resembling a slow but steady flow has been established between 

the origin and part (al of the separatrix in question; but short enough 
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that particles that have crossed this border have not yet been able to 

cross back F1l (so that we do not have to disentangle the competition 

between outflow and infall). We expect, intuitively, that the time 

needed to establish such a nearly steady leakage is also long enough 

that the distribution near the origin can relax, approximately, to the 

equilibrium Gaussian of far-from-resonance dynamics, i.e., ~21Twy,-' 

exp(-Jy/wy). 

In order to describe the flux at such times, it seems reasonable, 

following Kramers, to use a time-independent solution to Eq. (4.5), with 

the orbit curve in question treated as a perfectly absorbing barrier. 

If I s (I's" stands for "separatrix") is the canonical action of the 

family border at which the flux is required, then "perfect absorber" is 

equivalent to the boundary condition PCI,) = 0. 

A time-independent P brings us back to equation (4.7). In 

accordance with the discussion in the preceding subsection, the absolute 

value of the oonstant K is the flux that we seek to determine. Whatever 

the value of K, the solution of (4.7) with P(Is) = 0 is 

P(I) = (K/y) I1 dI' 
I blI'J 

s 

exp [,y $$ dItj . 
(4,.14J 

One might think at this point that K is to be determined directly 

from the behavior of (4.14) near the phase-plane origin. In particular, 

let Ic ("ow stands for "center") be the canonical action corresponding 

to the origin; then one might expect that when I = Ic, the right-hand 

side of (4.14) should equal (2xuy)-', the value of the resonance-free 

Gaussian at Jy = 0. 
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Unfortunately, the right-hand side of 14.14) is in fact singular at 

I : Ic. Indeed, near I:Ic, we may make the identifications 

I-I c-J, Y 
and f3 : $ + wt for some frequency w, in which case 

a(I) 1 < 6 2 vy 2 > = Jy I I-Ic , 
Y 

2 
b(I) >=Jw 

YY 
: (I-IcJ WY. 

(4.15) 

Thus, the right-hand side of (4.14) diverges logarithmically as I + Ic. 

This singularity certainly means that Eq. (4.14) cannot be used to 

describe P(I,tJ all the way down to I = Io. Let us guess, however, 

following Kramers, that the region in which (4.14) is unsuitable for our 

purposes extends only from Ic to Some Icy close to Ic. We are thus 

choosing to view the singularity in (4.14) as only the result of an 

analytically appealing but physically artificial way of continuing an 

approximation beyond its proper domain of applicability. 

(Why should this continuation have been singular in the first 

place? We can trace this problem to a topological defect in Eq. (4.7): 

If (4.7) really were valid down to I I Ic, then the region bounded by 

the orbit curve I = I0 would be gaining or losing probability IKI f 0 

per unit time. However, this orbit curve is just a single point, and a 

nonsingular distribution can only assign weight zero to the interior of 

a point. Thus K # 0 at I : Ic implies a singularity (a point source or 

a point sink) in the probability distribution at I = I=.) 

Let us now optimistically suppose, again following Kramers, that 

IO' is close enough to Ic that P(Ic'J Z C21rwyJ-' is still a reasonable 

approximation. We then have, from (4.14J, 
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(4.,6J 

To simplify (4.16), note first that the exponential on the 

right-hand side is inversely proportional, as a function of I', to the 

steady-state distribution (4.9). On this account we expect this 

exponential to be much larger on the outlying orbit I' = Is than at 

I'=1 1 c , near the origin. For this reason, we propose simplifying K as 

follo"s: We replace the integrand in the d1' integration in (4.16) by 

its leading behavior for I' near Is; and then we formally replace the 

d1' integration from I' = I 1 to I' 0 = Is by an integration from -0~ to 

Is, which we can perform analytically. In carrying out this procedure, 

we must optimistically assume that ICI, although close to I c, 1.9 

nevertheless far enough away that such a "separatrix-dominance" 

approximation is not undercut by the singularity of l/b(I'J near the 

origin. 

To make the result of this procedure explicit, we change the 

integration variable near the separatrix from I' to h', since otherwise 

we must contend with a singularity in b, because 

b(separatrixJ = 6(h=lAIJ ' g 1 = [finite] l m = -. 

h=lAl (4.17) 

With this change of variable, the separatrix-dominance approximation to 

(4.16~ is 
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2aw 
h:+m 

KI + jhzIA, ~& exp .f::,s dI"+(h'-IAl ) w]}-' 

a(I”J 
- d1” 
b(I”J 1 . (4.18) 

For a final simplification, note that the only integration that remains 

at the conclusion of (4.18) is no longer singular at the origin. Thus, 

we can now reinstate Ic in place of the imprecisely defined ICI, without 

significant distortion. The result is 

K Z w exp 
Y 

[-I:; $+i+ dj . (4.19) 

The absolute value of (4.19) is the desired formula. 

4. Phenomenological Calculation 

In this subsection, we apply Eq. (4.19) to a one-dimensional 

idealization of the system corresponding to Fig. 3. For this purpose, 

we assume in what follows that the six conspicuous islands in Fig. 3 

make up the only significant island chain in this system. We want to 

calculate the rate at which particles are expected to leak from the 

neighborhood of the origin to the separatrix of this supposedly unique 

chain. 

We base our flux calculation on three simple properties of such an 

idealization, two model-independent and one model-dependent. The 

model-independent properties are these: In any one-dimensional model of 
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the system depicted in Fig. 3, equations of the form (3.10) should 

provide a reasonable approximation to the Hamiltonian dynamics near the 

nonlinear resonance islands; while far from the islands one should be 

able to set jyZo, &yZ'l(Jy) (i.e., resonance-free oscillation). The 

form of the transition between these two regions is the model-dependent 

property. 

The reader, recalling part 1 of this section, might have expected 

that the near-resonance approximation could also be used to describe the 

transition region--the transition would then take place at values of J 
Y 

and ey for which curves of constant h were also curves of approximately 

constant J 
Y' 

Unfortunately, the structure evident in Fig. 3 is not 

favorable for this kind of ansatz. In particular, the origin, which in 

Fig. 3 appears to be well outside the resonant domain, happens also to 

sit on curves of constant h that would connect it with points that have 

unacceptable large values of J 
Y' 

To make this more precise, one begins by estimating the parameters 

JY" 
and (A/B) that characterize the effective pendulum energy h near the 

island chain of Fig. 3. We can extract estimates from this observation 

concerning the apparent separatrix in Fig. 3: The separatrix points that 

come closest to the origin appear to have J 
Y 

= [C7)2/21wy, while the 

farthest points on the separatrix appear to have J = [(18)2/2]w 
Y Y’ 

According to Eqs. (3.12) and (3.161, these two numbers must be the same 

as 
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JY = J 
.a f 

A l/2 

Y 
2n Y,B 0 . (4.20) 

The index ny~is clearly equal to six, since there are six islands. Thus 

we learn from (4.20) tnat 

Jyo'" " (7J2 + - 
2 1 = (931Wy , 

l/2 
(7J2 _ - 

2 1 - (5.7JWy (4.21) 

(For the sake of uniformity, we have made an arbitrary decision to 

report the numerical coefficients in (4.21), and in all subsequent 

computations, with two significant digits. Most of the computations 

that follow, however, are based on approximations so rough that the true 

error in our final result is undoubtedly much worse than one percent.) 

From (4.211 we learn that curves of constant h can connect the 

origin, at Jy=o, with points whose oscillator action J can be as 
Y 

large as 

JY” - CCJy0j2 - 4ny2 c$)]"~ = 3owy, 
(4.22) 

corresponding to 

(4.23) 

An oscillator action of 3% corresponds to a radius in Fig. 3 of 

[2*30]1'2 - 8, which is' 8/C2l1'2 ?: 5.6 times the rms radius of the 

resonance-free Gaussian. These numbers make it clear that if one used 
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the near-resonance approximation to describe the transition region, it 

would be hard to see how the test particle in Fig. 2 could remain as 

close to the origin as it does for so long before it finally sets out 

for the island chain. 

In order to accomodate to this situation, let us no" introduce two 

parameters, J t 
Y 

and ht (*t" stands for "transition") to systematize cur 

ignorance about the middle ground between the island chain and the 

vicinity of the origin. J t 
Y 

is to be thought of as the largest value of 

Jy Up to which 5 
Y 

I 0 is an adequate approximation to the equations of 

motion. We suppose that near J = J t, 
Y Y 

the system can also be described 

by a function h which is some sort of continuation of the near-resonance 

effective pendulum energy. Let ht be the value of this continuation 

that corresponds roughly to J ' 
Y 

. We assume that the term -IAlcos@--which 

would otherwise give an h-curve its variation in Jy--has become 

negligible by the time h reaches ht, mainly because of the natural 

Jy-dependence of the Fourier coefficient G 
ny9n 

from which A is derived. 

(Indeed, in general 131, G 
ny+ 

-J In '21 
Y y 

for small Jy.) Accordingly, we 

suppose, for definiteness, that h and Jy are related by 

(4.24~ 

near h = h t' 

What value are we to assign to J t? At present, we 
Y 

can only set 

rather generous limits: At the low end, we must have J t 2 0, trivially. 
Y 

At the high end, it seems intuitively reasonable to suppose that 

Jyt--which must correspond to an orbit curve that is nearly 

circular--must be no larger than [(7)2/2]w 
Y' 

the lowest value of J 
Y 
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taken by any point on the apparent separatrix. 

In what follows, we shall find it more convenient to refer to r, 

the ratio of~J t to J ', than to J t itself. 
Y Y Y 

In terms of r, the limits 

above are equivalent to 

0 5 r 5 (7,z'2 = .26. 
(4.25) 

It is not hard to imagine ways to improve on the phenomenological 

parametrization that we have just described, or to improve on the 

associated numerical methodology that we shall explain below. We shall 

not discuss such improvements here, however. The crude calculation to 

be described below yields a result so far from the observed value of the 

flux in question that, in my opinion, no essentially one-dimensional 

model, no matter how refined, is likely to be able to account for Fig. 3 

in a satisfactory way. F12 

Let us now proceed directly to the flux calculation itself. We 

carry out this calculation in two parts. The easy part is the estimate 

of the prefactor gCIA11/2nwy in Eq. (4.19). This is accomplished by 

combining Eqs. (3.24a) and (4.21), with the result 

lim 
is( tAi) 1 = 4g 

2llw 
. 

(a) Y 
(4.26) 

The hard part is the estimate of the integral in (4.19). To do 

this, we begin by decomposing the integral into two parts, referring, 

respectively, to the vicinity of the origin and to the vicinity of the 

island chain, 
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jIs $$$ d1" = sly 
' a(Jytt) 

dJy" .+ ./ 
IAl E(h"J 

b(J ") - dh". 

c Y ht 6Ch"J (4.27) 

Next, we rewrite each of these parts separately as a function of r. 

This is very easy for the first integral on the right-hand side of 

(4.27J--we may use Eqs. (4.15J, which apply here because of our 

assumptions concerning the form of the dynamics for J < J '. The result 
Y Y 

is 

t Jt 

I 
Jy aCJy") 

0 

dJ N = I ' (k) dJylT = $ = $ . 
b(Jyn) Y r = (93Jr, 

0 Y 
(4.28) 

where we have used (4.21) in generating the last approximate equality. 

The corresponding transformation of the second integral on the 

right-hand side of (4.27) is done in several steps: First, we 

approximate it by trapezoidal interpolation, because at this writing we 

do not have enough information to proceed in a more sophisticated way. 

The result is 

IAl 
I 
ht 

s dh” 3 (‘*i-“$ 6;;; + w) . 
(4.29) 

We then reduce separately each of the factors on the right-hand side of 

14.29J, as follows: 

For the first factor, we appeal to (4.24) and [4.21J, with the 

result 
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= lBiwy2 117 - (60) (r-1J21. (4.30) 

For the first term in the second factor, we appeal to (4.15), (4.24), 

and (4.21J, with the result 

Z(ht) 

6(ht)= 
J =J t 

Y Y 

2 

= [IB~w~~I-' Iny2wy/Jy01/(r-1) 

='llBlwy21-' (.39J/(r-1). (4.31) 

For the second term in the second factor on the right-hand side of 

14.29J, we appeal to Eqs. (3.24a),(3.25a), and (3.26a), together with 

(4.21J, with the result 

.Z:( A J 
--I+ 6C A J 

: lim; = -[/Blwy21-' l C.37). 
(a) 

Combining Eqs. (4.27)-(4.32), we have, in toto, 

(4.32) 
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d1" = (93Jr + [(17J-(60JCr-1J21 

c 

* [(.39J+lJ-' - (.37)3 . 

In view of inequality (4.25J, we learn from (4.33) that 

IS 

3351 - 
=(I") dI" 
b(P) 

G 38. 

Ic 

(4.33) 

(4.34) 

Finally, combining (4.26) with (4.34) according to the absolute 

value of formula (4.19J, we have our estimate of,the desired rate: One 

particle in from 

(&I x em (33) . o(lo'2) 

to 

(L) x exp (38) II 
8x49 

OC10'4J 

(4.35) 

(4.36) 

is expected to travel from near the origin to the apparent separatrix in 

Fig. 2 in what would be four relaxation times (8/y) in the absence of 

collision effects. As promised, this is very far from what one actually 

observes. As we learned in Section III, the observed rate is in fact at 

least one particle in about lo2 in roughly the same time period. 
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V. FURTHER STUDIES OF THERMAL RESONANCE 

As explained in Section II, the problem of thermal resonance--which 

we have deliberately neglected in the last two sections--could subvert 

the formal probabalistic methods that we have just finished defining and 

exploring. With this in mind, we conclude this essay with a brief 

discussion of two additional classes of systems in which thermal 

resonance can be identified, but which are--at least in 

principle--easier to study than Eqs. (1.1). The ideas to be sketched 

here will be developed in much greater detail in two separate 

publications ([41, [5lJ. 

1. Anharmonic Oscillator with Periodically Time-Dependent Friction [4] 

The equation of a noisy anharmonic oscillator with periodically 

time-dependent friction is 

j; + vet,; + $ U(Y) = x S(t), 
(5.1) 

where 5 is as defined in Section II, and J, is a constant. It is 

straightforward to adapt the arguments and manipulations in Section II 

(or in the Appendix) to this equation. One can easily formulate thermal 

averaging in this context, and can also easily identify the integrals 

that do not become independent of the canonical angle when a thermal 

resonance condition is satisfied. F13 A notable feature of this equation 

is that the corresponding thermally averaged Fokker-Planck equation is 

the same--as one can easily verify--as the averaged Fokker-Planck 

equation that would be associated with Eq. (5.1) if y(t) were replaced 

by the time-independent value 
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T 
<Y> : $ l y(t) dt, 

0 (5.2) 

where T is the repeat period of y. We shall explain shortly why this may 

be useful. 

I was led to investigate this system by considering the 

semiclassical approximation to the path integral representation cl91 of 

the probability distribution for system (1.1). In brief, this 

approximation relates the probability distribution to a path (three 

dimensional in the case of system (1.1)) that solves a variational 

fourth-order ordinary differential equation with time as the independent 

variable. In the case of (5.11, this variational equation is 

d- 
dt2 (5.3) 

This approximation is an appealing device for studying thermal 

resonance because one can hope that such a path might, in some sense, 

encounter a finite number of strong thermal resonances sequentially, and 

this might be easier to analyze than the full probability distribution, 

which could display thermal resonant effects in several locations 

simultaneously. In the simplest version of this conjectural scenario, 

thermal resonances would be localized events between which the path 

would proceed in some simple, easily characterized fashion. 

Unfortunately, in the ease of Eqs. (1.1) or (1.4) it is difficult 

to guess what the simple inter-resonance propagation law should be. 

This (apart from the obvious simplicity of a time-independent potential 
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U(y)) is what makes Eq. (5.1) so attractive as an alternative context in 

which to study thermal resonance. In the case of Eq. (5.1J, it is easy 

to make such a guess: One can guess that the semiclassical path 

propagates between thermal resonances in scme fashion closely related to 

a solution of Eq. (5.3) with y(t) replaced by <y>, since, as we have 

seen, this same replacement is mandated when thermal averaging is 

permissible. 

Although it is not immediately apparent, Eq. (5.3) can actually be 

solved in closed form when the friction coefficient is independent of 

time, at least in the limit of small y but long (ZOCl/yJJ time, which is 

the limit of interest to storage ring designers. This solution is the 

main result in Ref. [4]. It is a necessary first step towards a 

practical sequential analysis of thermal resonances. As explained in 

[4], however, more work needs to be done before it becomes clear that 

subsequent steps can be realized. 

2. Linear Oscillator with Periodically Time-Dependent Parameters [51 

This system is defined by the equation 

j; + y(tJ; + K(tJy = X(t) EltJ, (5.4) 

where now all three functions y, K, and X can depend periodically on 

time, with common period T. This is an appealing setting in which to 

study our problem, since linearity permits many otherwise difficult 

calculations to be carried out exactly. 

Strictly speaking, thermal averaging as defined in Section II is 

difficult to formulate in this context because there is no "differential 

smearing" when y : A = O--the frequency w' in a linear system is 
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independent of the canonical action, so all points in phase space rotate 

about the origin together. This does not mean, however, that there is 

no analogue ~of thermal resonance in linear systems. Indeed, a formal 

argument similar to that given in the appendix of the present paper 

shows 151 that as long as IJJ' is not an integral multiple of l/2 (2x/T) : 

n/T, the ansatz (2.3) applies to the steady state of Eq. (5.4)--i.e., to 

the solution of (5.4)'s Fokker-Planck equation that is periodic in time, 

with period T; and this argument can break down at UI' = nn/T in a'manner 

very similar (see 151, Eq. (2.7)) to the manner in which the 

manipulations in Section II break down at thermal resonance. 

Because of this similarity, perhaps one can learn something aboUt 

thermal resonance in general from the answers to questions such as: Ho" 

close must 4~' be to some nx/T in order that the steady state of (5.4) 

depart significantly from the result of dynamical averaging? What do 

such departures look like? 

In principle, one can obtain this information directly from an 

exact expression that can be derived in general for the steady-state 

distribution of a linear system. In practice, however, this approach 

tends to be rather complicated algebraically. 

The main result of Ref. [5] is a simpler approach, involving the 

leading terms in a systematic expansion of the steady state about a 

system with .' : nx/T. These terms can be calculated in a simple manner 

that is quite similar in spirit to the self-consistency argument in the 

appendix of the present paper. 

With this method, the questions posed above can be answered in a 

straightforward way. It will turn out that in most respects these 

answers are not especially illuminating as far as nonlinear systems are 
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concerned, except, perhaps, for this observation: In general, departures 

Fran the results of dynamical averaging are small unless, for some n, 

(a'-(nil/T)) is less than either O(y) (see 151, Eqs. (3.141, (3.17), and 

(B.13)) or O(y"*) (see [51, Eqs. (4.10)-(4.12), (4.15), and (B.23)), 

depending on the circumstances, in which cases the departures are 

substantial.F14 This leads us to wonder: In a nonlinear. system like 

(1.11, is a thermal resonance a localized but perhaps prominent feature 

of diameter O(y) or O(Y I/2 ) in the space of the canonical frequency 

vector Z' (and therefore in canonical action space, since :' is a 

function of ?)? At present we have no way of testing this conjecture, OP 

of convincingly formulating likely alternatives. 



-66- FERMILAB-Pub-83/93-THY 

Acknowledgements 

I am grateful to James Bjorken, Melvin Month, and Chris Quigg for 

encouraging my interest in this area. I am also grateful to Max 

Dresden, Loyal Durand, Semyon Kheifets, and Cosmas Zachos for helpful 

conversations, to John Neu for helpful correspondence, and to Anton 

Piwinski for permission to reproduce Fig. 3. 

Appendix: A Systematic Theory of Thermal Averaging 

In this appendix, we try to provide a systematic basis for 

Eqs. (2.3) and (2.111, which in Section II were obtained only in a 

hueristic way. We shall still need here to make assumptions that we 

cannot prove; by contrast with Section II, however, we shall be making 

them within a precisely defined context. 

In a nutshell, the basic philosophy underlying the arguments in 

Section II was this: For small y, one may think of system (1.1) in terms 

of the coexistence of two distinct processes operating on two widely 

separated time scales: Hamiltonian circulation along KAM tori, which 

gives rise (with a little help, on small scales, from diffusion1 to the 

smeared ansatz P(f,t); and slow, long-range drift across tori, which 

gives P(?,t) its time dependence, as governed by (2.11). 

To make this philosophy precise, we try to apply a technique known 

as *two-timingn, first introduced by Keller [201. (Once the appropriate 

notation has been explained, we shall indicate briefly how our type of 

system differs from those for which this technique was originally 

formulated.) 
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Thus, we write the probability distribution as a perturbation 

series 

e(?,Q,t,s) = PO(?J,t,s) + ye,(f,Q,t,sJ + . . . . (A.11 

The first time parameter t is qualitatively to parametrize Hamiltonian 

circulation, while the second time parameter 3 is qualitatively to 

describe frictional and diffusive drift. In intermediate stages of the 

following analysis we shall treat t and s as independent; at the end, 

however, one is to set 

3 = yt. (A.21 

Our specific aim is to prove that if thermal resonance can be 

ignored, then 

Po&5,t,3, = n (:,a), (A.3) 

where the function Ii satisfies Eq. (2.11) with t replaced by s/y. This 

will provide us with the desired systematic basis for thermal averaging, 

because then Eqs. (2.3) and (2.11) follow directly from the natural 

assumption that if y is small, then P(i,Q,t,s) can be approximated by 

the leading term in the perturbative expansion (A.1). Correction3 to 

thermal averaging are obtained in a systematic way by calculating higher 

order terms in expansion CA.1). 

Our analysis of PO begins with the Fokker-Planck equation for 

P,(?,?j,t,s), which is obtained from (1.4) through the replacement 
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CA.4) 

When Eq. (1.4) is modified accordingly, and then written in terms of the 

right-hand side of (A.11 and decomposed according to powers of Y, the 

result is 

LOP0 = 0, (A.5a) 

LOP, = L,PO' (A.5b) 

LOP2 = L,P,, etc., (A.5~1 

where Lo and y(L, + a/as) are the same partial differential operators 

that appear on the left- and right-hand sides, respectively, of (1.4). 

The desired properties of PO will be obtained from Eqs. (A.5) in 

two steps. The first step is the general solution of (A.5a). The 

second step is the derivation of conditions ~that this solution must 

satisfy in order that (A.5b) be self-consistent as an equation for P1. 

In order to solve (A.5a), we note that for any function Q(?,$,t,sl, 

[L Q] (3 3 t,s) E aa + w ' ??- 0 I , at i ae, , (A.61 

because Lo is nothing more than the (Lagrangian) derivative along 

Hamiltonian flow. In view of (A.61, the most general solution of 

Eq. (A.5a) is 

PO (9,8,t,s, = PO (1,8-tz1,3J. CA.71 

Beyond this, however, LOP0 = 0 leaves PO unconstrained. 
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(This is where our systems differ from those for which two-timing 

is on the surest foundation. In the usual applications [20], the 

equation LOP0 = 0 has only one solution, up to an overall s-dependent 

scale. Thermal resonance is the specific price that we pay for the 

additional freedom represented by (A.7j.l 

Most choices for PO are inadmissible because of a difficulty that 

shows up only when they are substituted into Eq. (A.5b). In such cases, 

(A.5b1, as an equation for P1, has no solutions that are consistent with 

the interpretation of t as an oscillation parameter distinct from the 

parameter s that characterizes secular drift. We now determine the 

conditions that i o must satisfy in order that this difficulty not 

appear. This will lead us directly to Eq. CA.31 and its associated 

partial differential equation. 

To reveal the desired consistency conditions, let us substitute 

(A.7) into Eq. (A.5b) and integrate both sides with respect to 

oscillation time t along a Hamiltonian orbit. This yields 

P,(f,Q+(t'-t);l,t',S) - Pl (i,$,t,s) 

= St' dt" 
t 

& + wi' & 
1 1 P1 

E It'd9 [LOP11 : j. 
t’ 

t t 
dt" [L,Po] 

a2eo 
alla1 j + 
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+ [A 1;' dt" fx +3,-t"ui'] + w; -$ Wi-tiil$] $ 

+ K~(' dt" (< $-t"wilj ($ ~ej-tw~jl$] $& 

+ [g It' dt" ($)(&x ~~j-tt'~jl$] & 

+ similar expressions with x replaced by y and by s. (A.81 

In Eq. (A.81, the action, angle, and two time arguments of each 

integrand are f,Q+(t"-t$',tW, and 3, respectiveiy. (Note that all but 

the first three integrands are in fact independent of 3.) In the final 

decomposition of fL,Po, the arguments of PO in every term are TJ-t;', 

and 3. 

The desired constraints on PO follow from the observation that if t 

is qualitatively to parametrize oscillatory behavior, then the initial 

difference in (A.81 must indefinitely remain bounded as a function of 

t' . Such an observation is legitimate for this reason: The initial 

expression in (A.81 is the difference of two values of Pl corresponding 

to two points on a single KAM torus at two different times. Since the 

torus depends periodically on time, these two points are forever 

restricted to a bounded domain in phase space. However, since t 

parametrise3 o3cillation, one intuitively expect3 Pl, as a function of 

t, to vary in a bounded way in bounded domains of phase space. Thus, 

the difference in question is bounded because each of its two 

constituent terms is separately bounded. 
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To extract the desired constraints, we now proceed as follows: The 

observation above implies that in the limit t'*, the expression in 

curved brackets in (A.8) must approach zero. In this limit, the 

dominant part of this expression is 

I 
2 t’ au.’ au l 
tt-t I t dt” (t”) 

2 

( 4 

1 
avx avx 

a’;, 
+ similar expressions with x replaced by y and by z l- ae.ae 1 j 

+ similar expressions with x replaced by y and by z 

CA.9) 

Note that we have neglected thermal resonance in obtaining this 

equality. If a thermal resonance condition (2.7) were satisfied, the 

coefficient within the curved brackets would depend nontrivially on 8. 

It follows from (A.9) that consistency of the oscillation interpretation 

of t implies 

O= [U:Cb$ ($*) >+3imilarexpre3sion3 

with x replaced by y and by z 1 v 
j 
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a2eo 

’ ‘ij aeiaej , (A.10) 

where the matrix C depends only on ?, and not on 3 or t (or, trivially, 

3) as long as thermal resonance can be neglected. 

For all but a measure-zero set of f's, we expect that the only 

solutions to (A.101 satisfy 

aPo/aei = 0, (A.11) 

for all i. If there were some other solutions, we would conclude from 

Fourier decomposition of PO that 

0 = c 
ij "i"j 

CA.121 

for some nontrivial multiplet ': of integers. This is possible for only 

a measure-theoretically exceptional set of 1'3, however, because all 

possible equations of the form (A.121 define, taken together, only a 

countable array of id-l)-dimensional subsets of the d-dimensional 

I- space. If thermal resonance could not be neglected in obtaining the 

coefficient of (t'-t)* in (A.q), then we could not arrive at (A.11) in 

this way because then C 
i.l 

would depend nontrivially on 8, 30 that 

Fourier decomposition of PO would by itself tell us nothing. 

With (A.11) we have met our first goal, Eq. CA.3). The remaining 

goal follows upon substitution of (A.11) back into (A.81 and again 

requiring that the expression in curved brackets vanishes. When we can 

neglect thermal resonance of the form (2.71, the result is 
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5 
d30 T[+< -v a1i an ->--- c 

(2rrJ3 ' avx a1i 1 
+ wx 

2 3 a*I. ax 
<p.L~ 

(2i7J3 av * ‘aI.+< 6 
1 X 

+ similar expressions with x CA.13) 

With the help of Eqs. (2.101, one sees easily that this is the same as 

Eq. (2.11J, with t replaced by s/y, which is what we wanted to show. 
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FOOTNOTES 

Fl. Radiation is not emitted strongly by beams in modern 

proton/antiproton storage rings. The relaxation time associated 

with radiation is measured in milliseconds for modern high-energy 

e+e- storage rings, and in from days to months for the current 

generation of operating or planned p/p storage rings. The 

processes that determine the sizes and shapes of stored hadronic 

beams are quite different and more complicated in many respects 

than the processes that determine the configurations of stored 

e+e- beams. For this reason, and also beoause colliding-beam 

problems are experimentally less SeVera in p/p than in e+e- 

systems [3], we shall not consider proton/antiproton colliders in 

this paper. 

F2. Strictly speaking, the system of Eqs. (1.11, with y set equal to 

zero, is not in manifestly Hamiltonian form, because the third (21 

equation lacks a term asg. However, we can easily.show that this 

system is a limit of a sequence of Hamiltonian systems, as 

follows: Define p, : ;, etc. Define Ea(px,py,x,y,s,t) z l/2 (II,* 

+ py* + wx2x2 + w,*y*, + g(x,y,z,tJ, and Hb(p,,sJ : l/2 Cp,* + 

w 2z2J z - Introduce a fictitious parameter E and let Qx Z Ex, 

Qy = Q, Px Z epx, Py Z EP~. Then Eqs. (11 are those derived 

canonically from the Hamiltonian EHa ,(PX/e,Py/e,QX/e,Qy/E,z,t~ + 

Hb(pZ,zJ, in the limit that all of E,P~,P~,Q,,Q~ approach zero, 

with Px/e, Py/E, Qx/E, Qy/E fixed. 
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F3. Orbits that cannot be placed in such families are chaotic, in a 

sense made precise in [El. We shall say very little about chaotic 

orbitsin the present essay, even though [see 131) theorists have 

often tried to ascribe the problems of storage rings to chaotic 

effects. Hamiltonian chaos on a large scale usually arises in the 

domain of phase space between two resonant (action-angle) regions 

whose relative separation falls below some characteristic 

threshold (lVresonance overlap," see [El). For this reason, it 

seems to us that a practical theory of probability distributions 

near resonance is a prerequisite for a fully general and intuitive 

statistical methodology for colliding beams, even when chaotic 

phenomena invalidate the simple action-angle picture. 

F4. The appropriate one-dimensional analogue of (2.3) actually does 

not appear in Kramera' 1940 paper [91. Kramer.3 makes only the 

somewhat weaker statement that the angle average I" o (d8/2riJP 

(I,B,t) satisfies the differential equation (2.11). We feel it is 

important to recognize that a stronger result is possible. For an 

alternative proof of (2.3) for the type of system treated by 

Kramers, see Ref. 141. 

F5. The alert reader will realize, as the argument progresses, that it 

is important for the spreading to be able to proceed along the 

flow direction ;'. Mathematically, this means that for some 

infinite3imal vector 3, we must have (x*$1:' parallel to ;'. This 

is in fact not possible for system (1.1) because the Hamiltonian 

part of the third (3) equation, which does not involve x or y, is 

the equation of a simple harmonic oscillator. Thus, in this case, 

one component (call it the third) of ;' must be independent of? 
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(in fact, identically equal to Wx), and therefore (d.$JZ' cannot 

have a third component to parallel that of $' itself. Strictly 

speaking, then, the argument to which this footnote refers leads 

not to Eq. (2.31, for the case of system (l.l), but instead to the 

statement P(?,J,t) I P(f,B3,t). However, the dependence on I 3 
and 

e3' the action and angle variables of the x-y-independent 

z-osoillator, is determined entirely by the third equation in 

(1.11, and therefore for very large times, the probability density 

P, as a function of I3 and 6 
3' 

must become proportional to the 

Maxwell-Boltsmann equilibrium Gaussian exp(-13/wsl, which is 

manifestly independent of 8 
3' with or without the arguments in 

this section. There need be no concern about the rate at which 

this Gaussian is approached, since we may imagine, as is 

reasonable, that the colliding beams have time to reach some sort 

of noninteracting equilibrium before they are brought into 

colli3ion, and therefore that the B3-independent s-Gaussian is 

already preestablished by the time the g-terms in (1.1) are 

"turned on." 

Note, incidentally, that none of this would have to make 

sense if the explicit time dependence in (2.1) were not 

constrained to be periodic. This pariodicity ensures that the 

apparent separating of points on different tori actually reflects 

real separating in X-Vx-etc. space, and not an artifact of an 

artificial choice of coordinates. 

F6. Actually, our hueristic argument, although suitable enough in 

spirit, is too naive in leading us to conclude that (2.4) is the 

proper integer-based obstruction to smearing the probability about 



-77- FERMILAB-Pub-83/93-THY 

dynamical tori. The correct such condition is identified in the 

Appendix (Eq. (A.2)). 

F7. Throughout this paper, we adhere to the convention that summation 

is implicit in repeated dummy indices. 

FB. To prove (2.13), one can compare the chain-rule identities 6ik = 

[(aIi/aVj) (avj/aIk) + (aIi/axj) (axj/aIk)l, etc., with the 

Poisson-bracket identities 6ik = [ (aIi/avj ) caek/axj) - (aIi/axj) 

caek/avj)i, etc., using the fact that the Jacobian matrix, 

schematically 

( 

auav awax 

aiwav J se/ax , 

has nonzero (in fact unit [17]) determinant. 

F9. From now on, we use "resonance" and "nonlinear resonance" 

interchangeably, unless otherwise indicated. 

FlO. One can easily show that in a one-dimensional system, the action 

variable of an orbit family is uniquely determined up to sign and 

an additive constant. The angle variable is uniquely determined 

up to the same sign, as well as an additive function of I, and a 

term 2xmt/T, for appropriate integer q (this preserves the 

periodicity of (2.1)). In the various discussions that follow, we 

shall be freely redefining I according to momentary convenience. 

However, since only signs and additive constants are involved, 

this should not cause any serious confusion. 

Fll. If we had wanted the flux across an arbitrary orbit curve in the 

family of the origin, this would be an unrealistic requirement, 

since there would be nothing to prevent a particle from turning 
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around immediately after reaching the curve in question. This 

objection does not apply to part (a) of the separatrix, however. 

Once a particle crosses limit (a), it is temporarily prevented 

from recrossing by two processes: (1) Hamiltonian circulation, 

which removes the particle from the vicinity of limit (a) to the 

vicinity of limit (b); and (2) friction, which causes a particle 

to fall in toward a resonance island's stable center. These 

expectations appear to be supported by the data shown in Fig. 3. 

Among higher-dimensional processes, the intervention of a single 

resonance with nx f 0 or ns t 0 would be the simplest possible 

explanation for the rapid transport seen in Fig. 3. This might 

become visually apparent in a graph that showed a different 

projection of six-dimensional phase space (see for example the 

second article in Ref. [12]). Unfortunately, no such alternative 

graphs appear to be available at this time for the particular 

simulation that corresponds to Fig. 3. 

We shall need to bow in 1'11 that when the potential U is 

symmetric, then in fact thermal resonance is present only when the 

integer n (the one-dimensional reduction of ': in (2.7)) is even. 

The reason is as follows: Thermal resonance for (5.1) comes about 

when the angular frequency a of y is rationally related to the 

angular frequency of vaI/av when evaluated along the orbit of a 

particle following the Hamiltonian flow. But when U is symmetric, 

then both v and aI/av change sign in time 1/2(2x/m') 3 x/w'. 

Therefore the true frequency of vaI/Bv is not u1 but &I'. 
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F14. This result assumes, as in Eqs. (l.lJ, that the parameter X is 

treated as if formally proportional to (y)l'*. 
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FIGURE CAPTIONS 

. 1. Schematic representation of an electron-positron storage ring, 

showing beam bunches and moving coordinate axes. 

2. KAM curves of a one-dimensional colliding beam model at a single 

moment in time. The separatrix is represented by dashes. 

3. (From Ref. [13].) Vertically projected path of one test particle 

from the computer simulation described in Ref. [161. Horizontal and 

vertical axes correspond to ~/(2)"~ and ;/192)"~ respectively. 

The distance markers divide the axes into segments of length one. 

The points are snapshots of the particle's position at equally 

spaced time intervals of duration T. Figure b. shows the first 

10,348 such points [the initial point is near the origin); Figure 3b 

shows the succeeding 619 points. The particle stays within the 

central dark region for about 8000T before proceeding to the 

satellite islands. The damping time in this simulation is 3000T. 

The three islands apparent in Fig. 3a are in reality all images of a 

single island that revolves about the origin at (70/3)*2n radians 

per storage ring period. Similarly for Fig. 3b. 

4. Results of approaching the separatrix in Fig. 1 in three different 

ways. (a) Limit of orbit curves that lie between the origin and the 

island chain. (b) Limit of orbit curves that lie beyond the island 

chain. (cl Limit of orbit curves within an island. 
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